
TEMPLATE DESIGN © 2007

www.PosterPresentations.com

OvE (Orcs vs. Elves) - 2D Strategy Game
Slightly Less Nice Green

Mark Dockendorf, Isaac Thomas, Luci Tran, Thomas Truong, & Ryan Vo
Sponsor: Dr. Ian Parberry & Curtis Chambers

Project Overview

The idea of the game would revolve around a 2D turned based 
system that allows users to use strategy to progress. The 
progression of the game revolves around multiple characters that 
the user is able to control. The result of this project will be a 
game that users can interact with. The game would contain an in 
depth weapons system that alters a user’s choice and 
effectiveness in the game. The decisions chosen by the user will 
be saved and used to determine the results of combat in the 
game.

The motivation for this project is to create a free to play game 
that is similar to strategy games available people have to pay for. 
At its core, the game is inspired by the Fire Emblem series but 
will be a minimized version that can be done within the time 
constraints given for this project. All group members have a 
strong interest in creating this turn based game in addition to 
having prior knowledge on how the game should be played.

Features

Design

The main gameplay feature of our project is turn-based combat 
between player controlled characters and artificial intelligence 
(AI) enemies. The starting point for this feature is designing how 
all future calculations will be based on. The unit class will be 
utilized by both player characters and AI enemies so that we can 
have reusability of all numerical calculations.

The combat system revolves around character stats and the 
weapon each character has equipped. Before entering combat 
with an enemy, the game will calculate the damage, hit rate, and 
other bonus effects that will be displayed to the user. If the user 
decides to initiate combat, then the final calculations will be 
decided. This combat design allows the user to plan out attacks 
on the enemy before initializing attacks. Additionally, the weapon 
and magic triangles will add variety in the different types of ways 
the user can play out each level. 

As characters move to perform their actions, their art needs to 
correlate to the situation. The sprite state diagram is a high-level 
overview of sprite transitions based on an action. Its purpose is to 
guide the creation of a character’s art as well as listing the 
conditional trigger to switch one sprite for another. While it is 
possible to only create sprites as needed, all player characters 
and AI enemies share the same type and number of sprites (i.e. 
moving in a direction, attacking, or idling). The reason for this is 
that during gameplay, any action a player character could do, an 
AI enemy needs to be able to do on its own.

Screenshots

2D shots of all characters.

F1) Character sprites
F2) Weapon/armor system
F3) Turn based combat system
F4) Character levels
F5) Class progression
F6) Weapon skill levels
F7) Main menu
F8) Currency
F9) Character animation transitions
F10) Two dimensional top-down grid based map
F11) Keyboard or mouse input
F12) Character selection

We are using Unreal Engine (v. 4.24.2) alongside Visual Studio 
(2017) to create our game. The game will be coded in C++. 
Assets will be created by ourselves (sprites) and royalty free 
sources (background, etc.).

The system will need a keyboard, mouse, and monitor. 
Additionally, the computer in use will need to run on Windows and 
Linux operating systems. 

Technologies

Screenshot of the characters on the playing map.

Unreal blueprint interface for movement.

Testing

The Unreal test environment is called Environment Query 
System. This system tests actor and pawn locations as well as 
the artificial intelligence system in Unreal.

For testing, we mainly focused on Unit Testing. Movement control 
for the player was tested by utilizing the Unreal Engine 4’s “Play” 
tool. Specific keyboard inputs were used to check if character 
movement corresponded in the correct manner.

Sprite State Diagram:
Shows the different states of a sprite and what triggers the sprite 
to advance to its next animation.

ER Diagram:
Shows the relationships of entity sets stored in a database and 
how they interact with each other.

Class Diagram:
Designed in a way that modulates the characters created. Our 
method for inserting the sprites into the base sprite class ensures 
that we will not need to create multiple characters with redundant 
data types. Each character inheriting the base sprite allows ease 
of development and lower coupling since the sprite data types do 
not need to interact with the base stats data type. 

Combat Sequence Diagram:
Shows the steps it takes to go through combat with a character 
an the results that should occur when an action is taken.


