
Efficient Coding
Team Eyes Wide Shut: Nelson Alfaro, Kale Bruton, Jeremy Lynch, Brandon Staley

Sponsor: Dr. Mark V. Albert, Computer Science & Engineering
Department of Computer Science and Engineering, University of North Texas

An app demonstrating the role of efficient
coding in understanding sensory
neuroscience. The application uses
computational tools such as ICA to efficiently
code visual and auditory information to
simulate the neural coding process done in
living creatures and sounds.

● fast ICA algorithm to process files
● Capture live image using the phone camera
● Capture live audio using the phone mic.
● Use user’s own gallery images and audio

files from the phone stoarge

Resulting filters that were captured naturally
through the device’s gallery and camera
hardware are as decribed.

● When files are processed through FastICA,
results are shown as matrices with black and
white spatial properties

● Audio files are also processed though the
FastICA algorithm and produce a result of
different wave fragments within the matrices

● Results are different based upon images and
sound files that are chosen or captured
uniquely

Background

App Features

Technologies

ResultsStrategy

What is efficient coding? Image patches or
sound files are efficiently encoded using
Independent Components Analysis (ICA). We
use this strategy to process either images or
audio files that are taken live by the user.

● Android Studio
● Eclipse
● Trello
● GitHub

Data Collection: Images or sounds provided
by the user are loaded into the app.

Conclusion/Future Goals

Patch Extraction: Extract 100,000+ patches
of 8x8 pixels, each patch is transformed into a
one dimensional array.

Efficient Encoding: Pass patches through
fastICA algorithm using 25 components.

● Though FastICA is a complex algorithm, it is
still the best solution to process images and
audio files to produce filters.

● Further work will be held to progress the
efficiency of the algorithm for accurate
results.

Display Filters: Display the resulting 25
patches created from the fastICA algorithm.

