
The Portal 2 Challenge Mode Leaderboards Project
Modern Web Approach

Daniel Bates, Josh Bednarz, Mitchell Baker, John Fiedler, Michael Murphy

University of North Texas – Computer Science

This project was intended to create a modern

web approach to represent data and provide

functionality to a community of competitors so

that they can keep track of all the data associated

with their challenge mode progression in Valve’s

“Portal 2”, released on the Steam gaming

platform in 2011. The community is made up of

thousands of individuals across the world who

have been playing for years, who approached our

team about tackling this project. The goal was to

add additional functionality to the current

rankings they have, by redesigning an eight-year-

old webserver with a modern and performant

webpage that is built with scalability and

adaptability in mind. The goal is to take the

foundation we created this semester and build it

out fully in the near future.

The stack for our project was built around speed, particularly

on the server side. Our backend and server architecture

utilize the Rust systems programming language, the

Actix_web framework backing our REST API, and the Diesel

ORM for connecting to our MySQL database. With how many

calculations we’re planning to tackle computing in the future,

this sort of low-level speed is vitally important. Modern Rust

also support async for web and is designed with a memory

ownership model that guarantees you data race freedom.

This allows us to easily parallelize our computations which

for calculating aggregated scores for thousands of users

every few minutes is crucial.

Our frontend is a modern React app that utilizes Material-UI

and React Router Dom to modernize the app for the modern

web, while keeping it lightweight and data-focused.

Our backend development pivoted halfway through the semester

after all the basic outline for database interactions was finished.

The backend team decided to switch to using a pool of database

connections that all endpoints have access to, as well as moving

all async API calls onto separate threads. Below is an example of

the server handling 60 API calls almost simultaneously (each

thread took roughly .01, across 12 cores). This performance boost

alone is a massive success, not to mention the rewriting of specific

routes to handle database calls in a manner that optimizes the

amount of data the needs to be sent over the network.

Single Player Example
In conclusion, we created an excellent foundation for the

community who tasked us with creating this board. Members of

our team will continue to develop additional functionality after

graduation as well as open-sourcing the project to allow others to

contribute, a current list of features is as follows.

Features

Database:

• Fixed foreign key structure for relations on legacy database

• Scripted in support for coop times being bundled

• Added support for different categories.

Web-server / Backend:

• Started our REST API

• Communication to the database with diesel

• GET endpoints modeled, all type-safe

• Functionality for the POST, PUT, DELETE endpoints

prototyped

• Server logging

• Authentication prototyped

• Steam API querying prototyped

• Async and multi-threading support using database pools for

parallel database read operations.

• Performant data filtering to provide the front-end.

Front-end

• Footer / Header components created

• Material-UI theme support (light and dark)

• DOM Routing with React

• Body components created

• About page

• Aggregated Pages

• Single Player & Cooperative Preview Pages

• Single Player & Cooperative Map Pages

• Changelog / Index Page

• Donation and Wall of Shame (banned players)

pages

Introduction

Examples

Technologies Results

Conclusion

Cooperative Example
Database Relations

Our database is a legacy MySQL database that

contains 10 years of history, we used a Python script

to automate updating and adding specific fields, the

biggest of which was creating the `coopbundled`

table that combines two normal changelog entities

into a combined entry.

Some of the performance compromises we had to

make during this project were in relation to the still

developing ecosystem surrounding Rust. Diesel had

several limitations with its query builder, specifically

with querying for distinct values, and for using aliases

with queries to join on multiple of the same tables.

Even with our calls being much more performant

than the current boards, it still leaves more

performance on the table for when these are

supported by diesel in the future.

REST API Example


